Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082862

RESUMO

Analysis of heart rate variability (HRV) can reveal a range of useful information regarding the dynamics of the autonomic nervous system (ANS). It is considered a robust and reliable tool to understand even some subtle changes in ANS activity. Here, we study the "hidden" characteristic changes in HRV during visually induced motion sickness; using nonlinear analytical methods, supplemented by conventional time- and frequency-domain analyses. We computed HRV from electrocardiograms (ECG) of 14 healthy participants measured at baseline and during nausea. Primarily hypothesizing evident differences in measures of physiologic complexity (SampEn; sample entropy, FuzzyEn; fuzzy entropy), chaos (LLE; largest Lyapunov exponent) and Poincaré/Lorenz (CSI; cardiac sympathetic activity, CVI; cardiac vagal index) between the two states. We found that during nausea, participants showed a markedly higher degree of regularity (SampEn, p = 0.0275; FuzzyEn, p = 0.0006), with a less chaotic ANS response (LLE, p = 0.0004). CSI significantly increased during nausea compared to baseline (p = 0.0005), whereas CVI did not appear to be statistically different between the two states (p = 0.182). Our findings suggest that motion sickness-induced ANS perturbations may be quantifiable via nonlinear HRV indices. These findings have implications for understanding the malaise of motion sickness and in turn, aid development of therapeutic interventions to relieve motion sickness symptoms.Clinical relevance- The study suggests potential indices of physiologic complexity and chaos that may be useful in monitoring motion sickness during clinical studies.


Assuntos
Eletrocardiografia , Enjoo devido ao Movimento , Humanos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo/fisiologia , Enjoo devido ao Movimento/etiologia , Náusea
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083234

RESUMO

Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel neuromodulation application for vagal afferent stimulation. Owing to its non-invasive nature, taVNS is a potent therapeutic tool for a diverse array of diseases and disorders that ail us. Herein, we investigated taVNS-induced effects on neural activity of participants during visually induced motion sickness. 64-channel electroencephalography (EEG) recordings were obtained from 15 healthy participants in a randomized, within-subjects, cross-over design during sham and taVNS conditions. To assess motion sickness severity, we used the motion sickness assessment questionnaire (MSAQ). We observed that taVNS attenuated theta (4-8 Hz) brain activity in the right frontal, right parietal and occipital cortices when compared to sham condition. The total MSAQ scores, and central, peripheral and sopite MSAQ categorical scores were significantly lower after taVNS compared to sham. These findings reveal for the first time the potential therapeutic role of taVNS toward counter-motion sickness, and suggest that taVNS may be reliable in alleviating symptoms of motion sickness in real-time, non-pharmacologically.Clinical relevance- This suggests taVNS potential to offset motion sickness-induced nausea; which may be of translational value to counter e.g., chemotherapy-induced nausea.


Assuntos
Enjoo devido ao Movimento , Estimulação Elétrica Nervosa Transcutânea , Estimulação do Nervo Vago , Humanos , Enjoo devido ao Movimento/etiologia , Enjoo devido ao Movimento/terapia , Náusea , Projetos Piloto , Estudos Cross-Over
3.
Sci Rep ; 13(1): 3272, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841838

RESUMO

Perturbations in the autonomic nervous system occur in individuals experiencing increasing levels of motion sickness. Here, we investigated the effects of transauricular electrical stimulation (tES) on autonomic function during visually induced motion sickness, through the analysis of spectral and time-frequency heart rate variability. To determine the efficacy of tES, we compared sham and tES conditions in a randomized, within-subjects, cross-over design in 14 healthy participants. We found that tES reduced motion sickness symptoms by significantly increasing normalized high-frequency (HF) power and decreasing both normalized low-frequency (LF) power and the power ratio of LF and HF components (LF/HF ratio). Furthermore, behavioral data recorded using the motion sickness assessment questionnaire (MSAQ) showed significant differences in decreased symptoms during tES compared to sham condition for the total MSAQ scores and, central and sopite categories of the MSAQ. Our preliminary findings suggest that by administering tES, parasympathetic modulation is increased, and autonomic imbalance induced by motion sickness is restored. This study provides first evidence that tES may have potential as a non-pharmacological neuromodulation tool to keep motion sickness at bay. Thus, these findings may have implications towards protecting people from becoming motion sick and possible accelerated recovery from the malady.


Assuntos
Doenças do Sistema Nervoso Autônomo , Enjoo devido ao Movimento , Humanos , Sistema Nervoso Autônomo/fisiologia , Estimulação Elétrica , Frequência Cardíaca/fisiologia , Estudos Cross-Over , Voluntários Saudáveis
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4781-4784, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085786

RESUMO

This study examines the neural activities of participants undergoing vibro-motor reprocessing therapy (VRT) while experiencing motion sickness. We evaluated the efficacy of vibro-motor reprocessing therapy, a novel therapeutic technique based on eye movement desensitization and reprocessing (EMDR), in reducing motion sickness. Based on visually induced motion sickness in two sets of performed sessions, eight participants were exposed to VRT stimulation in a VRT/non-VRT setting. Simultaneously, brain activity changes were recorded using electroencephalography (EEG) at baseline and during stimulus exposure, and comparisons made across the VRT/non-VRT conditions. A significant reduction in the alpha (8-12 Hz) spectral power was observed in the frontal and occipital locations, consistent across all participants. Furthermore, significant reductions were also found in the frontal and occipital delta (0.5-4 Hz) and theta (4-8 Hz) spectral power frequency bands between non-VRT and VRT conditions (p < 0.05). Our results offer novel insights for a potential nonpharmacological treatment and attenuation of motion sickness. Furthermore, symptoms can be observed, and alleviated, in real-time using the reported techniques. Clinical relevance - Instead of using drugs to treat motion sickness, patients could safely use this VRT technique.


Assuntos
Enjoo devido ao Movimento , Transtornos Motores , Procedimentos de Cirurgia Plástica , Eletroencefalografia , Humanos , Enjoo devido ao Movimento/etiologia , Enjoo devido ao Movimento/terapia , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...